Mathematics: analysis and approaches Standard Level

Name

Date: _____

1 hour 30 minutes

Paper 1

Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [80 marks].

exam: 9 pages

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer **all** questions in the boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 6]

The line *L* passes through the points P(-5,4) and Q(11,-8). Find the equation of the line perpendicular to *L* that passes through the midpoint of [PQ]. Write your answer in the form y = mx + c.

••••••	 	
	 	• • • • • • • • • • • • • • • • • • • •

2. [Maximum mark: 6]

Let
$$f(x) = \frac{1}{2x+1}$$
 and $g(x) = 2x-3$. Given that $h(x) = (f \circ g)(x)$, find:

(a)
$$h(x);$$
 [2]

(b)
$$h^{-1}(x)$$
. [4]

3. [Maximum mark: 5]

The first derivative of a function *g* is given by $(x-4)^3$.

- (a) Find the second derivative of g.[2](b) Write down the value of g''(4).[1]
- (c) The *x*-coordinate of point *A* on the graph of *g* is 4. Explain why *A* is **not** a point of inflexion.

4. [Maximum mark: 7]

Given that $\log_3 2 = x$ and $\log_3 5 = y$, express each of the following in terms of x and y.

(a)	$\log_3 20$	[2]
(b)	$\log_3\left(7\frac{13}{16}\right)$	[2]
(c)	$\log_5 8$	[3]

5. [Maximum mark: 6]

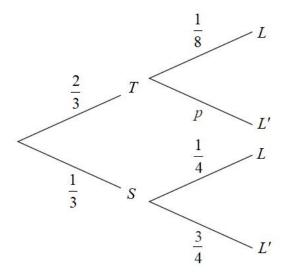
Consider the infinite series $1 + \ln x + (\ln x)^2 + \cdots$.

(a)	Find the values of <i>x</i> such that the series converges.	[3]
(b)	Find the value of x such that the series converges to 2.	[3]

6. [Maximum mark: 6]

Solve the equation $8\sin x \cos x = \sqrt{12}$, for $0 \le x \le \frac{\pi}{2}$.

Do **not** write solutions on this page.


Section B

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

7. [Maximum mark: 14]

Sophie travels to school by taking a taxi (*T*) or by riding a scooter (*S*). On any given school day, the probability she travels by taxi is $\frac{2}{3}$ and the probability she travels by scooter is $\frac{1}{3}$. If Sophie travels by taxi, her probability of being late to school is $\frac{1}{8}$. If Sophie travels by scooter, her probability of being late to school is $\frac{1}{4}$.

This information is represented by the following tree diagram.

(a)	Find the value of <i>p</i> .	[2]
(b)	Find the probability that Sophie will travel by taxi and be late for school.	[2]
(c)	Find the probability that Sophie will be late for school.	[3]
(d)	Given that Sophie is late for school, find the probability that she travelled by taxi.	[3]
So	phie will go to school on Monday, Wednesday and Friday next week.	
(e)	Find the probability that Sophie will be late exactly twice during next week.	[4]

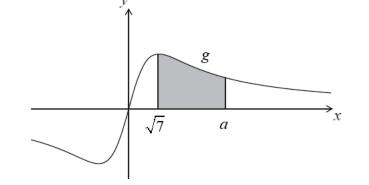
[8]

[2]

Do not write solutions on this page.

8. [Maximum mark: 14]

Consider the function $f(x) = 2x^2 + 4x - 5$.


- (a) Write f in the form $f(x) = a(x-h)^2 + k$. [4]
- (b) For the graph of *f* in the form $f(x) = a(x-h)^2 + k$.
 - (i) Write down the coordinate of the vertex.
 - (ii) Write down the equation of the axis of symmetry.
 - (iii) Write down the coordinates of the *y*-intercept.
 - (iv) Find the coordinates of both *x*-intercepts.
- (c) Hence, sketch the graph of f.
- 9. [Maximum mark: 16]

The function g is defined by $g(x) = \frac{3x}{x^2 + 7}$.

(a) Show that
$$g'(x) = \frac{21 - 3x^2}{(x^2 + 7)^2}$$
. [5]

(b) Find
$$\int \frac{3x}{x^2 + 7} dx$$
. [4]

The diagram below shows a portion of the graph of g.

(c) The shaded region is enclosed by the graph of *g*, the *x*-axis, and the lines $x = \sqrt{7}$ and x = a. This region has an area of $\ln 8$. Find the value of *a*. [7]